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Orientational dynamics in a liquid crystalline system near the isotropic-nematic �IN� phase transition is
studied using molecular dynamics simulations of the well-known Lebwohl-Lasher model. As the IN transition
temperature is approached from the isotropic side, we find that the decay of the orientational time correlation
functions �OTCF� slows down noticeably, giving rise to a power law decay at intermediate time scales. The
angular velocity time correlation function also exhibits a rather pronounced power law decay near the IN
boundary. In the mean squared angular displacement at comparable time scales, we observe the emergence of
a subdiffusive regime which is followed by a superdiffusive regime before the onset of the long-time diffusive
behavior. We observe signature of dynamical heterogeneity through pronounced non-Gaussian behavior in
orientational motion particularly at lower temperatures. This behavior closely resembles what is usually ob-
served in supercooled liquids. We obtain the free energy as a function of orientational order parameter by the
use of the transition matrix Monte Carlo method. The free energy surface is flat for the system considered here
and the barrier between isotropic and nematic phases is vanishingly small for this weakly first-order phase
transition, hence allowing large scale, collective, and correlated orientational density fluctuations. This might
be responsible for the observed power law decay of the OTCFs.
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I. INTRODUCTION

Liquid crystalline systems often exhibit interesting dy-
namics apart from the rich phase behavior. Surprisingly, dy-
namics of such systems have traditionally been probed only
at rather long time scales �nanoseconds to milliseconds�
�1–3�. Recently, Fayer and co-workers have investigated the
dynamics in the isotropic phase of thermotropic liquid crys-
tals over a wide range of time scales using the optical Kerr
effect �OKE� measurements �4–7�. At short to intermediate
time scales, they have observed a pronounced power law
decay of the time-dependent OKE signal near the isotropic-
nematic �IN� phase transition. At the intermediate times �sev-
eral nanoseconds� the decay becomes even slower, almost
appearing as a plateau on a log-log scale �4�. The exponential
decay predicted by Landau-de Gennes theory is observed
only at the longest time scale ��10 ns�.

Subsequent molecular dynamics simulations of a calam-
itic system �comprised of rodlike molecules� with the Gay-
Berne pair potential were found to reproduce the power law
decay of orientational time correlation functions �OTCF� �8�.
From a very recent computational study, which deals with a
calamitic system, a discotic system �comprised of disclike
molecules� and to a limited extent the Lebwohl-Lasher lat-
tice model, it appears that this power law decay at short-to-
intermediate times might be a rather general phenomenon in
thermotropic liquid crystals �9�. This observation has gained
support from a recent finding of power law decay at rela-
tively short times in an idealized calamitic liquid crystal
model with a length-to-width ratio 5–6 �10�. It has been ob-
served that many aspects of the orientational relaxation be-

havior outlined above bear close resemblance to what is ob-
served in supercooled molecular liquids near the glass
transition temperature �7,9,11�. In particular, the description
of orientational relaxation with a power law decay at short
times and exponential decay at long times is strikingly simi-
lar �7�. However, the origin of such a rich dynamical behav-
ior may be quite different in the two cases �9�. It would be
especially interesting to explore the free energy surface with
respect to orientational density fluctuations in search of the
origin of the slow dynamics near the IN transition.

Comprehensive understanding of this rather exotic
dynamics of thermotropic liquid crystals spread over almost
five decades of time is a challenging task, particularly be-
cause of the anisotropic nature of the interaction, which
makes the theoretical analysis difficult. Computational ap-
proaches have become very much useful in this regard as we
gain control over the microscopic interactions and try to un-
derstand their manifestation into the macroscopic behavior.
In this spirit, this communication attempts to continue the
investigation of the Lebwohl-Lasher model.

The Lebwohl-Lasher �LL� model �12� is essentially the
lattice version of the Maier-Saupe model. In this model, the
molecules being fixed on a simple cubic lattice lose their
translational degrees of freedom and can only rotate. The
total interaction energy is given as follows:

U = −
1

2�
i,j

�ij�3

2
cos2 �ij −

1

2
� , �1�

where �ij is the coupling parameter, signifying the strength of
interaction between the rotors. It has a fixed value � for the
nearest neighbors and 0 otherwise.

The LL model has been rather popular since its inception
in computer simulation studies of liquid crystals. Its merit
lies in the inherent simplicity with which it clearly estab-
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lishes some of the very essential features of orientational
ordering in liquid crystalline systems �13–17�. The simple
form of the anisotropic interaction and the absence of trans-
lational degrees of freedom makes the system particularly
easy to study. Most of the earlier studies involving LL model
used Monte Carlo �MC� methods, which cannot predict the
real dynamics of the system. In view of this, here we have
undertaken molecular dynamics �MD� simulations to inves-
tigate the dynamics in the LL model.

Our MD simulations of the LL model show that as the
transition temperature is approached from the isotropic side,
the decay of the orientational time correlation functions
slows down noticeably, giving rise to power law decay at
intermediate time scales. Another interesting result is the
emergence of subdiffusive orientational motion essentially in
the same temporal window where the power law decay sets
in. In addition, the subdiffusive motion is followed by a su-
perdiffusive regime before the long-time diffusive behavior
sets in. Moreover, we have used the recently developed tran-
sition matrix Monte Carlo �TMMC� method to obtain the
free energy profile for the system as a function of orienta-
tional order parameter. We find the barrier to be vanishingly
small for this weakly first-order transition allowing large
fluctuations in the orientational order.

The organization of the rest of the paper is as follows. In
the next section, we discuss the details of simulations. In
Sec. III, we present the results on orientational relaxation.
Section IV deals with the TMMC method and the results it
yields on the free energy calculation. Section V concludes
with a summary and a few pertinent comments.

II. SIMULATION DETAILS

The system under study consists of a �10�10�10�
simple cubic lattice with one rotor fixed on every lattice
point. Only the nearest neighbors interact through the orien-
tation dependent potential given by Eq. �1�. Here the distance
has been scaled by the separation between the adjacent
lattice points, which is taken to be unity. Throughout we
have used dimensionless temperature T* and time t* �for the
MD studies� defined by �13�:

T* = kBT/� ,

t* = t��/I��1/2 �2�

Here both the parameters � and I� �moment of inertia
with respect to the axis perpendicular to the molecular axis�
have been taken to be unity.

We have performed molecular dynamics �MD� simula-
tions in a microcanonical �NVE� ensemble using the velocity
Verlet algorithm. We have used a time step of �t*=0.002 in a
reduced unit and have obtained an energy conservation up to
the fifth place of the decimal throughout the simulation. We
have scaled the velocities at every 100 steps for an initial 105

steps to equilibrate the system at a particular desired tem-
perature and stored the trajectory for analysis after allowing
the system to evolve without scaling for another 105 steps.
The standard deviation in temperature during data acquisi-
tion was of the order of 0.01 for all temperatures. Periodic

boundary conditions �PBC� have been applied to remove the
surface effects. Earlier MC studies showed pronounced sys-
tem size dependence for this model. The same applies for the
MD simulation also. The size effect is particularly important
near the transition temperature as the correlation length tends
to diverge. The transition becomes sharper with increasing
system size. The transition temperature �TIN� and the free
energy barrier follow certain finite size scaling laws �16�. We
have found the dynamical features reported here to be quali-
tatively similar for different system sizes.

III. RESULTS

The phase behavior for the LL model has been well ex-
plored using Monte Carlo �MC� methods for pretty large
systems. But since there are relatively less numbers of mo-
lecular dynamics �MD� studies, we have computed the aver-
age order parameter at various temperatures using MD tra-
jectories. The value of the orientational order parameter is
determined by diagonalization of the ordering matrix Q
�1,17�:

Q�� =
1

2N
�
i=1

N

�3ei�ei� − ���� , �3�

where ei� is the �th Cartesian coordinate of the unit vector
�ei� specifying the orientation of the ith molecule. The largest
eigenvalue and corresponding eigenvector give the orienta-
tional order parameter and the director, respectively, for a
particular configuration. The thermodynamic order parameter
�S� is obtained by averaging over the simulation trajectory.
As shown in Fig. 1 the data obtained from the MD simula-
tion overlaps well with the result obtained from our MC
simulation.

Note that the MD simulation gives us the value of the
transition temperature to be �1.14. This differs from the
more accurate value ��1.1232� obtained from the MC simu-
lations �16,18� at the second place of the decimal. This is
acceptable because of the fluctuation in the temperature
present in the microcanonical �NVE� MD simulation and the
standard deviation of the order of 0.01 at all temperatures.
The fluctuation in temperature is particularly high near TIN.

FIG. 1. The average orientational order parameter indicating the
IN transition at T*=1.14. Empty circles indicate the MC results and
filled circles indicate the MD results.
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We have used the value obtained from our MD simulation to
explain our other observations.

Often the second rank order parameter is not enough to
decide if true long range order exists in the system. For that
purpose, orientational correlation functions �Gl�r�� are par-
ticularly useful. The set of correlations can be defined as
expansion coefficients of the rotationally invariant pair dis-
tribution �17�:

G�r,�12� = G0
00�r��

l

2l + 1

64�2 Gl�r�Pl�cos �ij� , �4�

where G0
00�r� is the particle center distribution, �ij is the

angle between rotors i and j, and Pl is the Legendre polyno-
mial of rank l. For a simple cubic lattice,

G0
00�r� =

1

4�	r2�
k

zk��r − rk� , �5�

where 	 is the density and zk is the number of neighbors at rk.
Hence, Gl�r�= 	Pl�cos �ij�
r gives the orientational correla-
tion between two rotors separated by distance r. Figure 2
demonstrates that if true long range order is present, G2�r�
decays to a plateau with value 	P2
 �17�.

A. Power law decay in OTCFs

Single particle OTCF gives a temporal measure of the
loss of the memory of a single particle of its own orientation
in the environment created by the surrounding molecules.
The single particle OTCF of rank l is defined as:

Cl
s�t� =

��
i

Pl�ei�0� · ei�t���
��

i

Pl�ei�0� · ei�0��� , �6�

where ei�t� is the unit vector denoting the orientation of ith
molecule at time t. Since, the LL model has up-down sym-
metry, C2

s�t� would be physically meaningful.
In Fig. 3 the log-log plot of C2

s�t� versus time is shown at
different temperatures approaching TIN. An interesting step-

like decay is clearly evident. The power law behavior
emerges just above the transition temperature, i.e., in the
isotropic phase close to the IN transition and continues in the
nematic phase. It has been rather difficult to fit the entire
decay by a single function due to the oscillatory regime in
the nematic phase and rather dominant plateau appearing just
before the power law regime. Hence, the OTCF has been
fitted only beyond the initial plateau using the following
functional form:

C2
s�t� = A + exp�− t/
��t/
p�−a. �7�

Here, the parameter 
 gives the time scale corresponding to
the long-time exponential decay, the parameter 
p signifies
the time scale of the power law decay, and the parameter a
gives the power law exponent. The values for 
, 
p, and a are
shown in the Table I. Note that the nature of the decay of the
single-particle OTCF is strikingly similar to the experimental
results obtained by OKE measurements.

We have an interesting observation that the time scale of
the exponential decay at the longer times becomes progres-
sively larger with decreasing temperature, whereas the values
of 
p clearly indicate that power law decay exists only near
the IN phase boundary and this becomes transient as one
moves away from the transition region. The values of the
exponent a follows a similar trend. The OTCFs for the high-
est two temperatures are almost purely exponential beyond
the plateau. We interpret the above result in the following

FIG. 2. The nature of spatial decay of the two particle orienta-
tional correlation function G2�r� clearly demonstrates the existence
of long range order in the nematic phase. The correlation function
decays to a very small value as the isotropic phase is reached.

FIG. 3. Demonstration of power law regimes in the log-log plot
of single particle orientational correlation function C2

s�t�: Fitted
power law regimes are shown as thick lines. The decay is almost
exponential for the highest two temperatures, i.e., the power law
component becomes very small.

TABLE I. Parameters 
, 
p, and a as obtained by fitting the
single particle second rank OTCF data to Eq. �7�.

T* 
 
p a

1.13 66.17 0.002 0.33

1.15 12.86 0.1 0.82

1.16 3.67 0.07 0.64

1.18 1.69 �0.0 0.001

1.21 0.84 �0.0 �0.0
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fashion. As the temperature approaches TIN from the isotro-
pic side, the single particle orientational relaxation becomes
slower due to the strong coupling of the rotational motion
with the surrounding molecules, which result in an orienta-
tional caging effect of the rotors. The formation of an orien-
tational cage or pseudonematic domains �within the isotropic
phase� surrounding a molecule, gives rise to the retention of
the memory of the previous orientation for a longer time,
resulting in the slow relaxation process. Thus, the collective
relaxation becomes important near the transition point.

Mode coupling theory �MCT� can be used to obtain a
semiquantitative theoretical description and also physical in-
sight of the slow dynamics near phase transitions �19–21�.
MCT starts with splitting the frequency �z� dependent
memory function, here the rotational friction, into two parts:

�R�z� = �RB�z� + �R	�z� , �8�

where �RB�z� is the short range or binary part which decays
on a short time scale and usually originates from collisions
between the molecules. Whereas, �R	�z� is the collective
part, deriving contribution from collective correlations.

In the present lattice model there is no collisional contri-
bution to the rotational friction. Therefore, �RB�z� can be set
to zero and this is in fact the reason for the large contribution
of the initial inertial decay. Friction is small at short times.
However, �R	�z� exhibits singular features at small frequen-
cies due to the emergence of long range orientational corre-
lations near the IN phase boundary. It was shown elsewhere
that at low frequency, the frequency dependent friction de-
velops a rapid growth which can be represented as �4�:

��z� � Az−�. �9�

Mean field treatment gives �=0.5. In general, invoking the
rank �l� dependence of the memory function, the single par-
ticle OTCF can be expressed as �22–25�:

Cl
s�z� = z +

l�l + 1�kBT

I�z + �l�z���−1

. �10�

As discussed by Gottke et al., this expression can be Laplace
inverted to obtain a power law decay in C2

s�t� over a range of
time scales �4�. Note that Eq. �9� is valid neither at large nor
at very small z, but rather at intermediate times.

To study the collective relaxation, we have calculated the
collective OTCF defined as:

Cl
c�t� =

��
i

�
j

Pl�ei�0� · e j�t���
��

i
�

j

Pl�ei�0� · e j�0��� . �11�

Evidently, the calculation becomes computationally quite ex-
pensive even for a 1000 particle system.

Note that the time derivative of the collective OTCF is
directly related to the time derivative of a polarizability-
polarizability correlation function and hence, to the OKE sig-
nal �4�. In Fig. 4 we show the prominent power law regimes
in the log-log plot of the derivative of C2

c�t� at two tempera-
tures just above TIN. In the case of the collective OTCF, the

power law exponents vary only little with temperature. The
value of the exponents are 0.33 for T*=1.15 and 0.37 for
T*=1.18.

Experimental studies on liquid crystalline systems with
rodlike molecules find the value of the power law exponent
in the range of 0.6–0.7 �7�. As observed before, the values of
the exponent a are not universal.

B. Power law decay in angular velocity autocorrelation
function

We have calculated the angular velocity autocorrelation
function �C��t�� defined as follows:

C��t� =
	��0� · ��t�

	��0� · ��0�


, �12�

where the angular velocity ��t� is perpendicular to the axis
of the rotor. In Fig. 5 we have shown the behavior of �C��t��
at different temperatures near TIN. We find that �C��t�� has an
oscillatory feature at a short time scale due to the under-
damped nature of the system. But we observe a pronounced
power law decay with the value of the exponent being in the
range of 1.7–1.8 at longer time scales. The origin of this

FIG. 4. Power law is exhibited in the derivative of collective
OTCF, which is essentially the OKE signal. Fitted power law re-
gimes are shown by thick lines.

FIG. 5. Power law is exhibited in the angular velocity autocor-
relation function at five temperatures across the IN phase transition.
The inset figure shows the log-log plot for three temperatures and
the thick lines indicate the linear fits obtained in the power law
regimes.
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power law can be attributed to the collective and correlated
orientational density fluctuations.

As in the case of the orientational correlation function
C2

s�t�, a semiquantitative understanding of C��t� can be ob-
tained from MCT. Since the rotational friction is given by
Eq. �9�, we have the following approximate expression for
C��z�:

C��z� =
kBT

I�z + Az−��
. �13�

This expression also gives rise to the power law decay of
C��t� at long times. Note that the decay of C��t� occurs at
shorter times than that of C2

s�t�. This is the reason for the
lower amplitude of the power law decay in C��t�.

C. Rotational diffusion

To probe the origin of the slow dynamics near the IN
transition, we have studied the rotational diffusion of the
rotors on the lattice. The rotational displacement has been
computed by integrating the angular velocity to have an un-
bound representation �11,26�.

� n�t� − � n�0� = �
0

t

dt��� n�t�� . �14�

In Fig. 6 the log-log plot of the mean squared angular
displacement versus time has been shown. Interestingly, we
observe the emergence of a subdiffusive regime at a time
scale comparable to the plateau observed in single particle
OTCF. This behavior becomes apparent even in the isotropic
phase and has been illustrated by the dip in the derivative of
the log-log plot �inset of Fig. 6�. The derivative plot shoots
up suddenly after the dip and the motion remains superdif-
fusive. The system takes a considerably long time to attain
the diffusive limit. Our simulation has not been long enough
to produce good averaging in that domain. Note that this

subdiffusive behavior is well known in supercooled liquids
and also has been found in calamitic systems studied with
the Gay-Berne pair potential �11�.

D. Non-Gaussian parameter

Non-Gaussian parameters �NGP� are often useful for a
description of the dynamical heterogeneity in complex sys-
tems �26,27�. For a system with linear rotors, the rotational
NGP can be defined as �11,26,27�:

�2�t� =
	��t�4


2	��t�2
2 − 1, �15�

where

	��t�2n
 =
1

N
�
i=1

N

	�� n�t� − � n�0��2n
 . �16�

In Fig. 7 we show the time evolution of the rotational
NGP. We observe large non-Gaussian behavior at intermedi-
ate time scales particularly at lower temperatures. Initially,
when the motion of the rotors is ballistic, the rotational NGP
is uniformly zero. It starts to grow at the comparable time
scale as the appearance of the subdiffusive motion and the
maximum is reached when the rotors escape from the orien-
tational cage and gradually reaches the diffusive limit at
longer time scales. The formation of pseudonematic domains
as TIN is approached from above would make the system
dynamically heterogeneous. The growing peak in �2

R�t� can,
therefore, be ascribed to the formation of pseudonematic do-
mains. Note that similar behavior is well known in super-
cooled liquids �11,26–28� and has been shown to be present
in lattice models, e.g., in relaxation of phenomenological
Brownian rotors based on the densely frustrated XY model
�29�. However, we do not observe any regular shift in the
position of the maximum within the temperature range of our
consideration.

FIG. 6. The log-log plot of the rotational mean square displace-
ment shows the gradual onset of subdiffusive regime followed by a
superdiffusive jump as the temperature is lowered across the IN
phase boundary. The derivative of the same plot has been shown in
the inset figure to clearly demonstrate the striking behavior. At very
long time the derivative should converge to unity corresponding to
the diffusive limit.

FIG. 7. The rotational non-Gaussian parameter across the IN
transition shows the increasing non-Gaussian behavior in the nem-
atic phase. We do not observe any appreciable regular shift of the
maxima with the temperature as in supercooled liquids.
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IV. FREE ENERGY AS A FUNCTION OF ORDER
PARAMETER „S…

We have computed the free energy per rotor as a function
of orientational order parameter using a variant of the tran-
sition matrix Monte Carlo �TMMC� method recently pro-
posed by Fitzgerald et al. �30�. This method is considerably
different than the reweighting methods for the calculation of
free energy and can be incorporated in any existing Monte
Carlo simulation. An outline of the TMMC method applied
to the present problem follows.

The basic idea is to calculate the probability ���S ,���
that the system is in a macrostate S �in our case, average
orientational order parameter� at the inverse temperature �.
Note that any average observable of the system can be com-
puted once the macrostate probability is known, e.g., in a
canonical ensemble, the free energy can be obtained as a
function of the order parameter from �F�S ,��=−ln ��S ,��.
The Boltzmann macrostate probability can be expressed as
��S ,��=�s�S��s ,��, where ��s ,�� is the Boltzmann prob-
ability for a particular microstate �microscopic configuration�
s. It is given by ��s ,��=exp�−�Hs�, where Hs is the value of
the Hamiltonian for the microstate s.

The algorithm of finding ��S ,�� is as follows:
�i� Similar to the Metropolis algorithm, for a given initial

microstate s, a new state t is proposed with probability qs,t.
As a simplification, we chose qs,t=qt,s though it is not strictly
necessary.

�ii� The probability of the move to state t being accepted
is

rs,t��,�� = min�1,
exp��T���t,��
exp��S���s,��� , �17�

where �S is the weight function corresponding to macrostate
S. For our purpose, we have set �S=−ln ��S ,��, which cor-
responds to the multicanonical approach �30�. Thus the mac-
rostates with lower probability are given more weight so that
toward the end of the simulation the histogram becomes flat
and low probability states are sampled quite well.

�iii� A new bookkeeping step is incorporated following the
equilibration of the above Markov chain. At every step an
array CS,T �initialized to zero� is incremented as follows:

For S�T,

CS,T��� = CS,T��� + rs,t��,� = 0� ,

CS,S��� = CS,S��� + �1 − rs,t��,� = 0�� . �18�

For S=T, CS,S=CS,S+1. Note that while the Markov chain is
guided by the multicanonical weight, the unweighted Boltz-
mann transition probabilities are stored for each visited mac-
rostate.

The canonical transition probability �CTP� between the
macrostates has been calculated at some interval as follows:

PS,T��� =
CS,T���

�
U

CS,U���
. �19�

The equilibrated Markov chain must obey the detailed
balance equation �S���PS,T���=�TPT,S���. Hence, the mac-
rostate probabilities have been obtained by solving the set of
coupled linear equations iteratively. The weights have been
updated at every 150�L3 steps and the simulations have
been continued for 5�106�L3 steps. The system learned to
pass through the low probability states automatically and
reasonably good sampling was attained.

The computed free energy surface is shown in Fig. 8. The
flatness of the free energy surface near TIN is certainly a
consequence of the very weakly first order nature of the tran-
sition and also partly due to the finite size of the system �16�.
Thus, a system of this size exhibits large scale fluctuation in
the value of the orientational order parameter. Such fluctua-
tions can give rise to the power law decay in OTCFs �9�. As
the system size increases, a small barrier separating the iso-
tropic and nematic phases appears near the critical point �16�.
This barrier height is directly related to the surface tension
between the isotropic and the nematic phases and it follows a
finite size scaling law �16,30,31�:

Fs

kBT
= lim

L→�

1

2Ld−1 ln�max���
�min��� � , �20�

where Fs is the surface free energy, d is the dimension, L is
the box length, and �max��� and �min��� correspond to the
maximum and minimum values of macrostate probability,
respectively.

Our result for 1000-particle system differs from one of the
earlier reports �16�, which uses a Ferrenberg-Swendsen re-
weighting technique, as the positions of the minima are com-
paratively well-separated in our case while we consider tem-
peratures far away from TIN. We feel this has better
agreement with the average order parameter values that one
should obtain at those temperatures. But for complete com-
parison between the methods and to verify the scaling rela-
tions for a free energy barrier, more detailed study in larger
systems is necessary.

It was discussed previously that the nearly flat free energy
surface can be included in a Ginzburg-Landau type free en-
ergy functional �9�. One can then write down the following
generalized Langevin equation for the fluctuating noncon-
served order parameter ��S� �9,20�:

FIG. 8. Free energy versus order parameter plot for a 10�10
�10 system at three different temperatures.
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d��S�
dt

= −� dt���t − t��
�F

���S�
�t�� + R�t� , �21�

where � is a damping coefficient, F��S� is the Landau-de
Gennes free energy as a function of the orientational order
parameter, and R�t� is a random velocity term related to � by
the fluctuation-dissipation theorem. As the temperature ap-
proaches the critical temperature Tc, the free energy surface
becomes soft. If one uses the Landau free energy expansion

�F = A�T���S�2 + B�T���S�3 + C�T���S�4, �22�

then it can be shown that Eq. �21� can give rise to a power

law decay of
	�S̄�t�


	�S̄�0�

at short to intermediate times.

If the noise term in Eq. �21� is neglected and a Markovian
approximation is made of ��t�, then one finds a power law in
the decay of 	�S�0��S�t�
. This power law originates from
the cubic and the quartic terms in the free energy expansion
given in Eq. �22�. However, an analytic solution in the pres-
ence of the noise term R�t� becomes highly nontrivial and
needs to be carried out numerically. Work in this direction is
in progress.

There are, however, two limits where one can obtain a
semiquantitative answer directly. If the free energy surface is
nearly flat, as shown in Fig. 8, then decay of 	�S�0��S�t�

occurs via a generalized diffusion. In this case, the power
law decay originates from power law behavior �in time or
frequency� of ��t�. Note that flatness of a free energy surface
implies that A�T��0 near Tc. A study of relaxation by diffu-
sion with a non-Markovian memory function was reported
by Denny et al. �32�. The alternate limit is where a signifi-
cant barrier develops between the isotropic and the nematic
phases. This, however, is expected to give largely an expo-
nential decay.

Note that the Landau-de Gennes behavior is obtained by
keeping only the quadratic term in Eq. �22� and the relax-
ation time is given by �in present notation�:


LdG =
1

2��z = 0�A�T�
. �23�

The exponential relaxation observed both in experiments and
simulations follow the Landau-de Gennes behavior with a
time constant given by Eq. �23�.

V. CONCLUSION

This paper contains to the best of our knowledge the first
detailed study of dynamics in an LL model near the IN tran-
sition in the context of power law relaxation. Despite having
a very simple intermolecular potential and no translational
degrees of freedom, the LL model exhibits an array of inter-
esting dynamical features near the IN phase boundary. The
orientational relaxation slows down at intermediate time
scales possibly due to the caging effect produced by neigh-
boring sites and the formation of pseudonematic domains in
the isotropic phase very close to TIN. The caging causes the
rotors to show subdiffusive behavior. The caging is, how-

ever, not strong enough, resulting in an underdamped motion
over a long period of time. Moreover, the vanishingly small
free energy barrier separating the isotropic and the nematic
phases confirms the nature of the phase transition to be very
weakly first order.

It is interesting to note the synergy in the emergence of
the power law decay in orientational relaxation and the sub-
diffusive behavior in the rotational motion. It is equally in-
teresting to find the superdiffusive behavior that follows the
subdiffusive behavior. This signifies the long flights of the
rotors just after they escape from the cage.

The analogy between the relaxation in supercooled liquids
and that in the isotropic phase near the IN phase transition
has been discussed only in recent literature �7,11,33�. Even
the present simple model shows dynamical signatures which
are well-known for supercooled liquids. Prominent among
them, are the power law relaxation and the subdiffusive be-
havior. It is interesting to compare the present scenario with
the one prevailing in supercooled liquids, where one often
finds two power laws, one leading toward the plateau and the
second one �Von Schweidler law� at longer times corre-
sponding to the decay from the plateau �7�. However, the
origin of such analogous behavior in the two systems can be
quite different. In the case of liquid crystals, the onset of
long range orientational correlations and the formation of
pseudonematic domains are responsible for the power law.
Anomalies in the relaxation behavior in supercooled liquids,
on the other hand, are believed to have a kinetic origin.

There now appear to exist two somewhat different inter-
pretations of the power law decay. The first one, proposed by
Gottke et al. �4,5�, is in terms of a diverging orientational
pair correlation function giving rise to a power law diver-
gence of the memory function at low frequencies �Eq. �9��.
The alternative explanation, offered recently by Bagchi and
co-workers �9�, invokes large scale fluctuations in collective
orientational density. The first explanation �in the spirit of
MCT� does not require such large scale density fluctuation. It
does, however, invoke diverging correlation length. The sec-
ond explanation is particularly relevant for weakly first order
transitions with second order characteristics where the two
phases are separated by a low barrier.

To put the current work in proper perspective, it is impor-
tant to recognize that the simple LL model studied here could
capture many dynamical features observed in the calamitic
system with a Gay-Berne pair potential, e.g., power law re-
laxation of OTCF, dynamical heterogeneity, and subdiffusive
behavior of the rotors near the IN transition. Moreover, the
similarity between orientational dynamics in the isotropic
phase of liquid crystalline systems near the IN transition and
supercooled liquids near the glass transition, observed ex-
perimentally and in computer simulations �7,9,11�, has been
evident even in this simple lattice model. While this general
behavior demands further study, it is instructive to consider
the specific information obtained from this study of the LL
model. One must note that the construction of an LL model
allows us to study the orientational degrees of freedom with-
out any interference from translational motion. Hence, the
dynamics in the LL model can provide important insights
into the orientational dynamics in liquid crystalline systems.
In addition, the present study reveals some unique features in
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the dynamics of the LL model as compared to the Gay-Berne
model system. Due to the underdamped nature of the poten-
tial, the orientational correlation functions tend to exhibit
more oscillatory behavior as shown in Fig. 3. Also, the IN
transition is more weakly first order in nature in comparison
to the Gay-Berne system and hence the free energy surface
becomes very flat near the transition temperature.

Because of the length of the MD simulations required to
obtain a reliable, statistically significant power law decay, we
have been limited to study a 1000-particle system. The un-
derdamped nature of the relaxation has made the statistical
averaging demanding. However, it would be worthwhile to
consider larger systems. We have made preliminary study of

a �20�20�20� lattice system �8000 particles�. We find that
the relaxation behavior does not change significantly, but the
free energy surface starts showing the formation of a notice-
able �but still small� barrier at the intermediate values of the
order parameter as expected �16�.
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